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The above estimate presupposes that a bug’s failure rate be-
comes known when the bug is discovered. If this is not the
case, then we can still use the data obtained by ¢ to estimate
A(t +5). One approach is to note that

where N;(¢) is the number of detected errors caused by bugi.
Hence, using (3) we can estimate A(¢ + 5) by
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A second approach to estimating A(z +s) is to note the fol-
lowing:
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Hence, the above suggests the possible estimator
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Although we intuitively favor (4), numerical tests are needed to
see whether (4) or (5) yields the better estimates. Of course,
s should not be too large in relation to ¢ for either estimate to
be very effective.

We can also use the above to estimate the expected number
of new bugs discovered in (¢, ¢ +5). As this quantity is equal
to pE[f§ A(t + y) dyl, it follows from (3) that we can esti-
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mate this quantity by

When the failure rates do not become known when a bug is
detected, we can estimate the expected number of bugs that
will be discovered between ¢ and ¢ + 5 by

ZM(t)

Remarks: The results in this section can be used to devise an
easily implemented stopping rule for testing. One could test for
a time ¢ and then, based on the observed data, choose an addi-
tional time testing time s such that the estimated error rate at
s would be appreciable. One can then reevaluate this after
testing for the additional time to determine whether to stop
or continue for an additional time indicated by the above.
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Abstract—A method is proposed for quantitatively evaluating the
availability of a distributed transaction system (DTS). The DTS dy-
namics can be modeled as a Markov process. The problem of formulat-
ing the set of linear homogeneous equations is considered, obtaining
the related coefficient matrix, that is, the transition rate matrices of
the DTS elements. Such operations can be performed according to the
rules of Kronecker algebra. The transition rate matrices are used to cal-

culate the probabilities of the different possible states of the DTS. The
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availability with respect to a transaction 7 is computed through its
representation by means of a structure graph and a structure vector
related to the probabilistic state of the DTS element relevant to the
transaction T itself,

Index Terms—Availability, distributed databases, Markov models, per-
formability, reliability.

I. INTRODUCTION

One of the prime motivations for building distributed trans-
action systems (DTS) is to enhance availability with respect to
what would be provided by a centralized system. The redun-
dancy of data and processors provided by a DTS potentially
enables it to continue its work despite the failure of individual
sites. The growth in complexity of DTS and their use in ever
more critical application areas make their availability an im-
portant design consideration.

The problem of availability and reliability evaluation has
been already considered by researchers [1]-[3]. Modeling of
computer reliability, starting from the earlier works [4], has
stressed the representation of the probabilistic nature of struc-
tural changes caused by faults in the computer elements. A
modified Markov model has been used to evaluate a number
of computation related measures for degradable computing
systems [5].

An approach to some aspects of reliability and availability
evaluation in distributed databases is presented in the follow-
ing papers: in [6] dependency among fragments of data is
studied in relation to their availability; in [7] particular em-
phasis is put on the structure of the database considering host
nodes as fundamental elements; in [20] the workload depen-
dency of transition rates is considered in a real-time distributed
database.

A. The Distributed Transaction System Environment

In order to perform a quantitative analysis of availability in
a DTS, we must identify the components which concur in de-
termining its behavior.

Fig. 1 shows the scenario of the DTS from a transaction
point of view. It is a fairly common assumption that the dis-
tribution issues are transparent to the application programs im-
plementing the transaction, i.e., a transaction requiring access
- to data and processing on different computers (called global
transaction) is written as if it were completely performed lo-
cally. Therefore, a global transaction will be defined in terms
of a set of global data belonging to a distributed database and
a set of operations to be performed on them.

For the ease of description and without affecting the gen-
erality of the method, the DTS database is considered to be

based on a relational model of data. Relations can be either:

horizontally or vertically partitioned; moreover, in order to
have a good performance of the system also in case of failure
of one or more nodes, copies of relations as a whole or of frag-
ments of the partitioned relations can be stored at several
nodes [8]. When distinction among them is not needed we
shall call relations, fragments, and copies by the generic name
of data items. All the data items of the DTS are stored in
physical files.

The distributed computing system, which is the support of
DTS, is made up of two kinds of subsystems: the host nodes
and the telecommunication network. The host nodes are con-
stituted by the cooperating computing centers. The telecom-
munication network is constituted by transmission and switch-
ing devices, linking the host nodes.

Moreover, in a multiuser/multiprogrammed environment,
such as found in most of the host nodes, a concurrency con-
trol mechanism is needed which serializes the execution of
transactions accessing the same data at the same time.

. On this system a set {T} of transactions is processed. Each
transaction T requires a number of data items (files) to be
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Fig. 1. The distributed transaction system ‘‘scenario.”

available in order to produce the desired results. Task of the
system is to determine the distribution features of the global
data relevant to the transaction, such as the logical fragmenta-
tion of relations and/or their duplication, and the set of all the
allocation nodes where they are physically stored; moreover,
a set of all the execution nodes must be determined, where the
operations, related to the transaction itself, can be performed.

We distinguish two data items sets for a given transaction T:
the read-set RSy, composed of the data items that must be
read in order to process the transaction, and the write-set
WSr, composed of the data items that must be updated by
the transaction itself. We assume that, to successfully com-
plete a transaction, at least one copy of every element of the
read-set and at least k copies (if we want k-resiliency in up-
dates [1], [6], [7]) of every element of the write-set have
to be available.

The topmost level of performance of a DTS system is at-
tained when all the transactions belonging to {T} can be pro-
cessed. In this paper we define the capability of execution of
the most critical transaction alone as the least acceptable ac-
complishment level. Therefore, in the following, we are going
to evaluate the availability of the system with respect to such
a transaction.

Then, the system is available (i.e., the transaction can be pro-
cessed) if and only if at least one of the possible copies of each
of the data items relevant to the transaction is available, all of
the execution nodes which are unique resources for the trans-
action and at least one of those which are considered to be hot
backup are available, and at least one communication path
exists between the nodes which must exchange information,
the node issuing the transaction included.

Mastering a system of such a complexity, requires a “divide
and conquer” philosophy. Therefore, we identify several levels
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of description, each one composed of many subsystems; each
subsystem can be modeled (as far as availability is concerned)
in terms of its transition rates between the working and the
failed state and vice versa, Transition rates for subsystems at
one level can be, in principle, evaluated from the transition
rates of the components of the more detailed models at the
lower levels [29].

The description level of DTS identified in this paper is pre-
sented in Section II, where the availability model assumptions
are also discussed. In SectionIll a two—step method is proposed
for availability evaluation.

II. THE APPROACH
A. DTS Elements

We will evaluate the DTS availability starting from a level
whose subsystems are as follows:

e data-items

e concurrency control policies
e host nodes

e communication paths.

The behavior of each subsystem is represented by its transition
rates between the working and the failed state and vice versa.
In a DTS, the rates may belong to one of the following classes:

independent rates, i.e., their value does not depend on the
state of any other component in the system, nor on the work-
load on it;

state-dependent rates, i.e., their value changes depending on
the state (working or falled) of some other companent in the
DTS, be it of the same or of different type;

workload-dependent rates, i.e., their value changes depend-
ing on the workload applied to the component itself.

Our model can deal with both independent and dependent
rates. In particular, state dependence is accounted for through
a stress effect caused on a component i by the failure of
.component 7.

The stress effect is represented by a stress adjustment factor
Yir ‘

)\ix,so Axj=1:Vj#r

Yir = (2.1

)“'x,-=1:Vj

If there is no dependence between two components, then
Yir = 1.

The stress effect on component i due to the failure of a set
of components can be represented as the chain product of the
stress adjustment factors of component i pertinent to all failed
components (chain s-dependence assumption)
*Yirg * 0 * Vi 2.2)
This assumptions is a simplification of the real context since
only direct dependencies between components can be con-
sidered, but it substantially reduces the amount of data re-
quired in the computation of availability.

The actual evaluation of the behavior of the transition rates
and of the value of the stress adjustment factors is mainly
based on the statistical analysis of historical series of values,
collected in already working systems [14]; however, in some
simple cases, analytical and simulation modeling can prove use-
ful to this purpose [20].

Moreover, the most general case of state-dependent transi-
tion rates claims for an all-from-all dependence. Such a situa-
tion would pose very hard computation problems, owing to
the exponential nature of the related algorithms [7].

For these reasons, as a first approximation, the independence
hypothesis is usually applied.- In this paper, we shall use state-
dependent rates for the data items, while we shall keep the
independence hypothesis for the other subsystems. Anyhow,

7ir1r2 T = 71}'1
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TABLE 1
SYMBOL DEFINITION
D} data items on node N;
d; data item (D: number of data items)
i element of the DTS (n: number of elements)

virtual link from node i to node j (L: number of links)
node (N: number of nodes)

read-set of T
s; semaphore (S: number of semaphores)
{T} set of transactions on DTS
T transaction
WSt  write-set of T
A7(t) availability with respect to T
cr structure vector
p(t)  probability vector

Q state space of the DTS system
q value in Q

Qi subspace of the DTS system

RT(I) reliability with respect to T’
time

u (t) state trajectory in Q * 7

xi state of element i

X; DTS state at ¢

Yir stress adjustment factor for element i due to the failure of ele-
ment 7 ,

At time interval

N failure rate of element i

Ki repair rate of element i

T mission period

for every subsystem we shall show some dependence issues,
which are still an open research field, and the approximations
which are to be made in order to consider these subsystems as
if they were state/workload independent.

In Table I all the symbols used in the paper are listed.

Data-Items: Transitions from state X, to another state X,, o¢
due to data item failures or repairs are caused by the following:

1) hardware failures and repairs of //O devices, or disks,
magtapes, and so on;

2) system and software failures and repairs such as inconsis-
tency of data, depending, for instance, on incorrect data entry,
etc.

Therefore, we assume that the data item is available if the
related I/O device is functioning and the stored data are in a
consistent state,

Actual hardware and software transition rates for individual
data items can be obtained by statistical analysis of historical
series collected in working installations. Analytical models can
prove useful also; in [30] the checkpoint-rollback-recovery
mechanism to provide a fault-tolerant operation of transaction
systems, by assuring the integrity of the database, is modeled
as a continuous-time Markov chain. However, we are going to
show that a kind of dependence (state dependence) exists
among the transition rates of the data items d;. The kind of
dependence is different for duplicated, fragmented, or simple
relations.

Duplicated Relations or Fragments In the case of a dupli-
cated relation (or fragment), all the operations on a failed
copy are transferred to a copy of the relation (or of the frag-
ment) which is still available. This means that the failure rate
of each still available copy is increased, both owing to the
heavier load on the disk unit and the enhanced danger to data
integrity; that is, the stress adjustment factor is greater than
one. The actual value of the stress factor can be evaluated on
the basis of the manufacturer’s reliability data, supposing that
the predominant failure mechanism is due to the mechanic
stress to the arm, connected to the access frequency. In this
case the chain s-dependence assumption can be considered
fairly valid: if more than one copy fails, and the load is evenly
distributed, the A;’s of the other copies are proportionally in-
creased. A similar situation, but with a different workload-
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dependent failure mechanism, is described in [20] for highly
available redundant real-time distributed databases.

Fragments: For ease of description, we consider only one
level partitioning for a relation; that is, if a relation is parti-
tioned, it can be partitioned only in one way, either horizon-
tally or vertically. Fragments of a partitioned relation exhibit
a state-dependent behavior if a transaction exists requiring the
relation as a whole. Fragments obtained from a relation via
horizontal or vertical partitioning are dealt with in the same
way. We suppose that a control mechanism (transaction anal-
ysis) exists that prevents the execution of transactions involv-
ing a whole relation if one of its parts is unavailable. From
these considerations it comes that the failure of a fragment
of a relation involves the abortion of the global transaction re-
quiring it, and therefore a lower number of accesses are done
on the working fragments, which are still alive for local trans-
actions. Then the probability of a failure changes for each
part of the relation if one or more than one of its parts fails.
In this case the values v;, are less than one.

Single Relations: Two relations are considered dependent
on each other if at least a transaction exists’ which requires
both relations for its execution. The failure of one of the two
relations involves that transaction execution cannot take place,
provided the same control mechanism exists as described for
fragments. It comes that the probability of failure of a rela-
tion is lowered if other relations are not available, that is, the
stress factor is less than one, since fewer transactions are done
on it.

Concurrency Control Policies: Availability and transition
rates of a tangible component (hardware or software) are
easily understandable concepts, but it is harder to model the
same quantities for the algorithms controlling the DTS, while
they greatly influence the availability properties of the whole
system. '

In this paper we take into account concurrency control for
database access, modeling a two-phase locking protocol in DTS
[91, [31].

In our model locks are done at data item level; data items
are locked to prevent inconsistency in update operations.
Semaphores take into consideration that a data item can be
unavailable due to the fact that it has been locked by another
transaction. The probability of a semaphore to become red
(the corresponding data item is locked) or green (the corre-
sponding data item is accessible) depends on the adopted lock-
ing policy. Effects of granularity of locked elements and of
locking policies on the performances of locking algorithms
have been examined in [9]. '

The computation of the transition rates depends also on
transaction frequency and frequencies of access to the different
data items. We suppose that if a transaction cannot lock all
the data items it needs, it finds the system is in an unavailable
state and it is not queued.

~ From the above considerations failure rates for semaphores
can be computed analytically or by simulation [10]. The re-
pair rate u; depends on the mean time of execution of a trans-
action, considering that all locks are not released until transac-
tion termination. In the case of uniform access to the various
data items in the database, semaphore transition rates are inde-
pendent from the state of other semaphores [11]. These rates,
 however, depend in a complex way from the state of other
DTS elements; for instance, the duration of the blocked state
for a data item depends on the state of the disk unit. How-
ever, semaphore transition rates are considered in our model
independent from the state of other DTS elements on the basis
of two considerations: first, ssmaphores working in a perfectly
functioning system have the highest possible failure rates, so
the consideration of these rates refers to a worst case analysis;
second, quantification of state-dependent rates is possible
today only through simulation of each particular case and,
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with this method, state dependency is implied in the mean
values resulting from the simulation experiments.

Host Nodes: As shown in Section I, the DTS runs on N host
nodes N; which can perform two types of functions in trans-
action execution. A node can be an execution node or an al-
location node. In both cases the node has to be working in
order to perform its function in transaction execution.

Node failures can be due either to internal failures, such as
hardware or system software errors, or to external failures,
due to the external environment.

Each host node component has its failure and repair rate.
However, in our model it is important to know the failure and
repair rates of the node on the whole. These values can be ob-
tained from computer producers, from statistical data, from
simulation or using one of the analytical models avallable in
the literature [12], [13].

Some works [14] and [15] have outlined a dependence of
transition rates values of the CPU from system workload. This
workload depends in DTS on the strategy chosen in the execu-
tion of single transactions. However, the workload generated
in a general purpose multiprogrammed host node by a single
transaction is a small fraction of the total workload on the
node. The factors that can influence the workload of a host
node are contrasting. . Host nodes can be both execution and
allocation nodes for many transactions. If a node is used as an
execution node the stress factor y for all the possible alterna-
tive execution nodes is greater than one. If a node is used as
an allocation node, the stress factor 7 is greater than one for
nodes containing copies of a failed data item and smaller than
one for nodes containing nonreplicated fragments or relations.

These considerations suggest to consider, as failure rates, the
failure rates of the nodes at a high workload, and to consider,
as a consequence, all nodes independent from each other, us-
ing a worst case policy in DTS availability evaluation.

Communication Paths: Let us call virtual links l,, between
two host nodes i and j, the possibility of communication be-
tween the two nodes, the communication being possible through
whatever physical path between them. The availability of the
virtual link implies that at least one of the physical communi-
cation paths is available (i.e., it is constituted by functioning
elements). Each physical link has a failure and a repair rate,
and the topology of the network conditions the dependence
of the transition rates of virtual links on the transition rates
of physical links constituting it.

In the DTS model we are interested only in transition rates
of virtual links, which are for an N nodes system N *(N- 1)/2
(the network is logically a complete graph).

Methods for the computation of probabilities of interrup-
tions of a virtual link between two given nodes in a communi-
cation network are found in the literature [16]-[18].

The main problem in this field concerns the consideration
of state dependence between failure rates of physical links
[19].

Virtual links failure rates could be considered state-dependent
due to the fact that failures of nodes in the DTS can cause dif-
ferent executions of the transactions, increasing the workload
of some of the virtual links; however, the influence of work-
load on transition failures for virtual links is less important
than other factors that can cause physical link dependence and
nevertheless are not considered in the above-mentioned net-
work reliability models. Therefore, in the following we will
assume the virtual links failure rates independent from each
other.

The repair rate u of a virtual link is obtained in a similar way
from the mean time to repair, assuming that multiple failures
are repaired contemporarily and independently.

Therefore, the DTS elements are as follows:

N state-independent host nodes V;.

L state-independent host node-to-host node virtual links ;.
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S state-independent semaphores s;.
D state-dependent data-items d;.
Then the number n of DTS elements is

n=N+L+S+D.

B. Availability Model Assumptions

DTS as described are gracefully degradable systems. Failures
can be both hardware failures, such as the absence of a virtual
link between two nodes or a broken disk, and software fail-
ures, such as inconsistency of data, time-outs (possibly caused
by overloads of nodes [20]), and so on. In this paper the
mechanism to account for both hardware and software failures
is the same: each element i of the system can either be available
(working state: x; = 1) or not available (failed state: x; = 0).
Failure of an element i is the transition from x; = 1 tox; = 0.
Repair of an element is the transition from x; = 0 to x; = 1.
Each element i of the DTS system has a failure rate A; and a
repair rate y;.

N;At and p; At are, respectively, the probability of a failure
and of a repair in the time interval At for element i, these ex-
pressions holding for small Az.

We suppose to observe the system in a time interval 7, called
the mission period. The mission period is continuous and it is
determined by the particular application (i.e., one day, one
month, etc.). The behavior of the DTS is formally viewed as
a stochastic process. X, is a random variable taking values in
the state-space Q of the DTS. The state-space @ is discrete,
since the state X; of a DTS composed of n elements, with two
possible states each, can assume 2" different values g. A value
q can be represented by its equivalent representation in a bi-
nary code, where each bit represents the state of one element,
elements being ordered in a predefined way; that is if x; are
the states of the n elements, ¢ can be obtained with the fol-
lowing relation: -

g=(2"-1)- Y x;*2" %

i=1,n

(2.3)

In our approach it is possible to see the system at different
levels of detail. Each element i can be considered as an ag-
gregate of elements of an increased detail. This is equivalent
to decompose the state-space Q into a product of subspaces

Qi
0=Q1 *Qy * - *Qy

where Q; is the subspace of the ith aggregate of elements.

The system behavior in 7 is described by its state trajectory
u(t), which describes the succession of the states occupied by
the system during its mission period.

The probability vector p(¢) is composed of the 2" elements
pq(2), denoting the probability of “X, = ¢” as a function of ¢
within the mission period 7. The state of the system depends
on the failures and repairs of each of its elements. We assume
that failure and repair rates are independent of time t.

We suppose, moreover, that no more than one element can
either fail or be repaired in the time interval A¢, so that transi-
tions between states of the DTS can be only due to the failure
(or repair) of a single element. This consideration allows us to
build a Markovian model of the DTS [21], [22]. ‘

Let us define the following.

Availability of the DTS with respect to a transaction T:
Ap(t) = probability that the system performs T € {T} success-
fully within the mission period, where maintenance (hardware
and software) is performed on the DTS and transactions are
executed concurrently.

In the next section the method to compute A 7 (¢) is intro-
duced.

2.4)
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III. THE METHOD

The aim of the proposed method is to provide a mean of
numerically quantifying the fault-tolerance of a DTS. Its main
characteristics are the following:

e hardware and software failures are dealt with in the same

way

e it can be automatized.

The method consists in the following three phases.

1) Dynamic phase: computation of p(z).

2) Static phase: computation of ¢z, which represents trans-
action T in the DTS structure. The elements ¢, set to zero in-
dicate that a failure critical to transaction T occurred in state
X; = q in the system. A critical failure for a given transaction
occurred in state X; of the DTS if the transaction cannot be
executed in that DTS state.

3) Availability computation.

We assume that the system is always started in a completely
functioning condition (Xg = 0, p(0)' =[1000 - - - 0]).! This
hypothesis corresponds to the real case of global maintenance
done periodically (i.e., once a day, once a week) in most work-
ing systems. We suppose that after maintenance all the DTS
elements are perfectly working, and the shared resources are
free.

A. First Phase: Dynamic Phase

The goal of the dynamic phase is to express probabilistically
the state of the system at time ¢ through the probability vec-
tor p(¢) {231, [28].

Let pll)(t) and p((,')(t) be the probabilities for element i to
be, respectively, in state x; = 1 and x; = 0 at time ¢.

Starting from state x; = 1 at ¢, the probability that at (¢ + At)
element i is in state 0 is equal to A; Az, and in state x; = 1 equal
to (1 - A;At), provided At is small enough to make higher
order terms negligible. The sum of the two probabilities is 1.
Starting from state x; = O at ¢, the probability that at (z + At)
element j is in state 1 is equal to u; At, and in state 0 equal to
(1 - p;At). We can write the probability of being in state 1
or 0 at time (¢ + At) in the following way:

Pt + Ay = (1- Nan) * pP(0) + wAr * 20 (0)
p+ An = Nar = o) + (1~ a0 * pS ).

From these formulas we obtain, for Az = 0, and defining

@
) @) . N M
p(‘)(t) = pzi) and A= ' !
po (1) Nl
P20 =AD«pP)  with p@w)=11 o. @)

A(l) is called the transition rate matrix of element i.

Formula (3.1) can be used to compute the probability vector
p(t) of the whole DTS [24], [25].

In fact, if we have a DTS transition rate matrix, A,, we can
compute the probability of the DTS of being in each of its
states as follows:

p()=A, *p(2)

Note that the nondiagonal elements of matrix A,, 1, indi-
case the probability 1,,,At (for a small At) of the transition
from state w to state v. Columns w in the matrix represent
present states, rows v, next possible states. The diagonal ele-
ments are the negated sum of nondiagonal elements for each
column, representing that from each state there is either a
transition to another state or the permanence in that state.
With a Markovian model of the DTS we assume that in a cer-

with  p(0)'=|1 0---0l. 3.2)

1The symbol ' denotes the transposition of a vector.
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tain state w only one of the DTS elements that are available
can become unavailable in Az. .

A, can be obtained from the A®ss of the single elements,
as we are going to show in the following section.

Once A, has been obtained, the system of differential equa-
tions (3.2) can be automatically solved by a computer. The
solution of system (3.2) is the probability vector p(z).

1) DTS Transition Rate Matrix A,: In Section II we consid-
ered the transition rates for each virtual link, each semaphore,
and each host node independent from the state of any other
DTS element (state independence), while we consider that
data items can depend on the state of some other data items,
according to the transaction set {T}. Therefore, the computa-
tion of the transition rate matrix A, is subdivided into two
steps: one calculates the total transition rate matrix Aj,q for
state-independent elements, such as virtual links, semaphores
and host nodes; the other calculates the total transition rate
matrix Agep for state-dependent elements such as data items.

Computation of Ajpg: In general, if two DTS elements are
independent, the transition rate matrix A, for the part of the
DTS constituted of these two elements can be computed as
follows, using Kronecker algebra [25], [26].

For two DTS elements, 1 and 2,

A, =AW @ AP, (3.3)

Element j is added to the system formed by (j - 1) elements
(A = A®) by means of the Kronecker sum

A=A, & AD (3.4)

where A,- is the transition rate matrix of a DTS with j ele-
ments, and AY) is the transition rate matrix for element j.
The number of possible system states is doubled and the pos-
sible transitions between states due to the failure of last in-
troduced element j are indicated putting in the matrix A]- 2/ X
27) the element transition rates 7\,- and y; in the proper rows
and columns.

In general, if there are k£ independent DTS elements, the
transition rate of the DTS can be obtained via the formula

Aind = Zi=1,x ®AD. (3.5)

Computation of Agep: Let us decompose each transition
rate matrix A" for element i in the following way:

AD = ) 4 3D (3.6)
where
L(i)=|'7‘i O a m@=|% M|
Ni 0 W

The DTS transition rate matrix for k-dependent elements, Ay
is the sum of a failure part Ly, and a maintenance part My

Adep=Ak=Lk +Mk' (37)

The failure part L, considers the state dependence of fail-
ures, while M, considers the maintenance, as performed inde-
pendently from the data item states.

Let

1 0
0 Y

be the stress adjustment matrix of data item i due to the fail-
ure of the data item r. Ly is obtained as follows:

Ly =Ziey x [(Mpay, iy ® Gi) O LD ® (2 4 1 @ Gi)].
(3.8)

Gir

The proof is straightforward and can be found in [32].
My, is obtained as follows (see also formula (3.5) for the
state-independent case) )

Mk=2i=l,k @M(i) 3.9)
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Computation of Ay: A, is computed from Ajpg and Agep
using the formula for the state-independent case

An = Aind ® Adep-

B. Second Phase: Static Phase

The static phase consists of the construction of a model of
the transaction in the DTS; this model is constituted by the
structure graph and the structure vector [28].

1) Structure Graph for a Transaction: In order to compute
availability, we need to know, besides the probabilistic state of
the DTS, which elements of the DTS are relevant to the exe-
cution of the considered transaction 7.

For ease of exposition, but without a loss of generality, we
shall consider henceforth that the set of execution nodes coin-
cides with the necessary allocation nodes.

The condition which must be met for a successful comple-
tion of the read access of T is that each relation contained in
RS must be available. Relations can be partitioned or dupli-
cated; availability of a duplicated relation means that az least
one copy must be available and availability of a partitioned
relation means that all the fragments of the partitioned rela-
tion must be available. The completion of a write access, on
the contrary, requires the availability of a number of copies
of duplicated relations which depends on the resiliency degree.

Each transaction starts from a node N;. We suppose that all
the data items must be reachable from node N; at the nodes
where they are stored. We do not consider optimization in
accessing distributed relations, since this is not in the aim of
the paper.

These conditions can be visualized on a directed acyclic
graph, G ={V, E}, called the structure graph.

The elements of G are as follows:

e one vertex, called source S, without incoming edges, which
represents the origin of the transaction

e one vertex, called drain D, without outgoing edges, which
represents the committing of the transaction

e edges E, which represent the DTS elements that are rele-
vant to transaction 7.

e vertices V, connecting the edges from S to D

Edges are connected in series if the elements they represent
are all necessary for performing the transaction.

Each read-set is formed by the serial connection of the graph
parts relative to each relation.

Graph G is formed by the serial connection of the graph
parts relative to the edge corresponding to the starting node,
the subgraph relevant to the read-set and the subgraph relevant
to the write-set, if the write-set is not empty.

K-resiliency is represented in the structure graph with (%)
parallel groups of k serial edges. The simplest and most usual
case is the one in which at least one copy must be updated be-
fore the transaction commitment (1-resiliency), with m strate-
gies (m parallel edges).

Transaction T can be executed if there is at least one path
from the source to the drain where every element is in a work-
ing state. The path is not representative, however, of the real
order of access to the different DTS database relations and the
relative DTS elements. This order depends on the chosen exe-
cution strategy, and it is not a matter of availability of the
system. All we need is that the structure graph be at least
1-connected.

2) The Structure Vector: The structure graph can be asso-
ciated with a Boolean expression, the Structure Graph Logical
Expression SGLE, that inidcates whether in DTS state X, the
transaction can be executed or not.

The steps to obtain the SGLE are the following.

e To each edge the state x; of the corresponding element
is associated.

e Serial elements are connected with an .AND. operator.

e Elements in parallel are connected with an .OR. operator.
A group of two or more elements connected in parallel is
closed in brackets.

(3.10)
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Fig. 2. Availability computation.

It is possible to simplify the SGLE by applying the funda-
mental theorems of Boolean algebra.

This expression is computed for every possible state of the
DTS system. If the SGLE, computed for a DTS state X; =g,
takes value 0, a failure critical to that transaction has occurred
in that state.

The structure vector ¢ is obtained as follows: the value com-
puted with the SGLE for state X; = ¢ is assigned to element
¢q. Elements ¢4 set to 1 in the structure vector thus represent
the states in which it is possible to execute transaction T.

Given:

e the logical and physical distributions of the relations on
the different nodes,

o the starting node of the transaction,

® RS,

* WS,

e the resiliency parameter k,
the SGLE can be derived automatically [7], [27] (Appendix I).

C. Third Phase: Availability Computation

DTS availability is computed using the probability vector
p(t) and the structure vector ¢p

Ap(®)=cr * p(D).

Some numerical examples have been presented, showing the
practical use of this method in the case of a distributed data-
base system with duplicated files and state independence among
the transition rates [7], and of a fragmented database with
state dependence among the transition rates of the fragments
belonging to the same file [6]. We show some of these results
in Appendix II.

(3.11)

IV. SUMMARY AND CONCLUSIONS

In this paper we present a method to obtain the quantitative
evaluation of the availability of a distributed transaction sys-
tem (DTS).

We introduce some models for the DTS subsystems. The
level for the DTS description, which is used, aims at showing
how the proposed model works. The actual application of the
method to evaluate the availability of a real DTS requires for
the application of a “divide and conquer” philosophy. In fact,
a bottom-up usage of it allows to evaluate availability for
smaller subassemblies of the system and to use these results
in the evaluation of larger parts.

Some issues are left open in this work namely, the evalua-
tion of transition rates in the case of nondlrect state depen-
dence, and the impact of the workload and availability on the
performance indexes of the system. These problems will be
the object of further research in such a way as to allow the
application of the proposed model also in wider environments.

APPENDIX I
BASIC ALGORITHM FOR BUILDING
THE STRUCTURE VECTOR

foreachq € Q
begin Structure Graph Logical Expression SGLE
begin andchain
N, = starting node
{form an AND chain for each data item}
for each data item d; do
cham[/] =Xq; .AND. Xg; -AND. Xp7
if d; € D* ande #* Ny then
chain[}] := chain[j] .AND. Xisk
end andchain
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Fig. 3. Reliability computation.
{relations are either partitioned or replicated} : APPENDIX II
begin partrel NUMERICAL EXAMPLES

{add an AND chain for each partitioned relation}
SGLE:=TRUE
for each relation partitioned in n parts do

fori=1,n do transition rates are state-inde
¢ Lo pendent.
SGLE:=SGLE .AND. chainl[ji] The following parameters are used: for nodes (files): A = 1 *
end partrel 1073 4 =2.78 * 1072 forlinks: A=0.33 * 1073 u=1.6 * 101,

begin duplrel E le 2—Reliabili AU 2
{form an OR chain for each replicated relation} xample 2—Reliability Computation: Fig. 3 shows the reli

for each relation replicated m times do
if k = 1 then { 1-resiliency}
SGLE:=SGLE .AND. (chain[j1] .OR. chain[;2] .OR. - - .OR.
.OR. chain[jm])
else {with ¥ = K form a chain of ('¥) chains of X elements}
SGLE:=SGLE .AND. (chain[j1] .AND. * * *+ .AND. chain[jK]) .OR.
.OR.(chain [ ] .AND.  .AND. chain[ ])

Example 1-—Availability Computation: Fig. 2 shows the
availability . computed for a distributed database with four
nodes, with three files, two of which are duplicated, where

end duplrel
SGLE:=SGLE .AND. XN ability (DTS without maintenance) computed for a distributed
end SGLE database with three relations, partitioned in five files, three of
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which are duplicated, when transition rates are state-dependent.
The following parameters are used:

for files:

A=1%103
Y12 =721 = Y34 =Ya3 = Y67 = Y76 = 2
Y53 = 7Ys4 =786 = V87 = 0.5.

In both examples all elements are used in the transaction.
The parameters A and u are constants for elements of the same

type.

=0
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Optimal Load Balancing in a Multiple Processor System
with Many Job Classes

LIONEL M. NI anp KAI HWANG

Abstract—A loosely coupled multiprocessor system contains multiple
processors which have their own local memories. To balance the load
among multiple processors is of fundamental importance in enhancing
the performance of such a multiple processor system. Probabilistic load
balancing in a heterogeneous multiple processor system with many job
classes is considered in this study. The load balancing scheme is formu-
lated as a nonlinear programming problem with linear constraints. An
optimal probabilistic load balancing algorithm is proposed to solve this
nonlinear programming problem. The proposed load balancing method
is proven globally optimum in the sense that it results in 2 minimum
overall average job response time on a probabilistic basis.
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